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A compact cluster of 3 to 6 rigid equal spheres is falling under gravity in a viscous 
liquid. The small effects of inertia on a horizontal regular polygonal configuration 
are that the polygon expands as it falls and small perturbations from this con- 
figuration die out, although when the polygon is large enough i t  becomes weakly 
unstable. This is an extension of the analysis of Hocking (1964), which was 
applied to the experiments of Jayaweera, Mason & Slack (1964). 

1. Introduction 
Jayaweera et al. (1964) observed compact clusters of equal spheres falling in 

a viscous liquid. If the number n of spheres in the cluster lies between 3 and 6 
inclusive, and if the Reynolds number Re based on radius and velocity of fall is 
between 0.06 and 7.0, the spheres form a regular polygon in a horizontal plane, 
which expands slowly at a decreasing rate as they fall. Oscillations about this 
polygonal configuration decay at the same time. If Re < 0.06, or if the spheres 
are too widely separated, there is no tendency to form a regular arrangement, 
and if Re > 7 the spheres simply separate. If n exceeds 6 the polygonal arrange- 
ment is apparently unstable. 

Hocking (1964), among other things, showed on the basis of Stokes equations 
that if the separation of the spheres is large compared to their radii, such a 
polygonal configuration of 3-6 spheres is stable to small perturbations, but for 
7-12 spheres it is unstable. The polygon should remain of constant size during 
the fall, and the amplitude of small oscillations of the spheres about their mean 
relative positions is also constant. He also speculated that the expansion of the 
polygon and the damping of the oscillations should be ascribed to inertial effects 
ignored in this theory. 

The objective of this paper is to investigate this speculation, on the basis of an 
extension of his analysis valid when the Reynolds number Re for each individual 
sphere is small but not zero. Each sphere falls vertically through the liquid with 
an appropriate terminal velocity, but also moves with the average velocity of 
the fluid in its neighbourhood. This velocity arises from the flow round the other 
distant spheres, and gives rise to slow relative motions. The innovation here is 
in using the velocity field appropriate for Oseen flow rather than the Stokes flow, 
and in the modifications to the normal modes in the stability analysis which 
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allow for the change of the equilibrium configuration with time. Specific 
results are: 

(i) On the basis of the Stokes equations, Re = 0, the polygon will not expand, 
nor will small oscillations be damped, even if the radius of the spheres is com- 
parable with their separation. 

(ii) When 0 < Re < 1 and the spheres are widely spaced, the polygon expands 
with time at a rate which ultimately decreases to zero. 

(iii) When 0 < Re < 1 and the spheres are widely but not too widely spaced, 
the inertial correction to Hocking’s analysis is relatively small, but for 3 < n < 6 
small oscillations are damped. Under these conditions both the rate of expansion 
of the polygon and the rate of decay of the oscillations are proportional to Re, but 
from numerical results it appears that for the amplitude of the oscillations to be 
halved, the radius of the polygon has to increase by a factor which depends on 
the mode of oscillation but is at least 16. 

(iv) For any Re, if the spheres are sufficiently far apart, the polygonal con- 
figuration is unstable, though the interactions are extremely weak, and this 
effect is probably unobservable. 

The polygon formation described by Jayaweera et al. (1964), took place mainly 
at larger Reynolds numbers and smaller separations than those within the 
purview of this theory. However, the qualitative agreement over the later 
stages of polygon formation is satisfactory, although the theoretical value for 
the damping coefficients seems too small. 

The equations of motion used by Hocking (1964, equation (4)) are valid 
asymptotically in the limit a/s+O, Res/a+O, where s is a typical distance 
between the spheres. For given small Re this fails if s/a becomes too large; but 
if Re s/a is still small but not negligible we may easily compute the first correction 
to Hocking’s equations in powers of the Reynolds number. 

If, on the other hand, Re s/a & 1, Hocking’s equations are not even a valid first 
approximation. We may, however, easily use the theory of the Oseen region 
round an isolated sphere to obtain similar expressions for the relative motions. 
These are discussed briefly in 0 3. 

2. The case Re s/a  < 1 
If pi is the position of a point P relative to thej th  sphere, the fluid velocity 

a t  P relative to a frame of reference moving with the Stokes terminal velocity 
- U z  of each of the spheres is 

In  this formula z is the unit vector parallel to the downward vertical. The second 
term is the superposition of the disturbance velocities from the Stokes flow of a 
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uniform stream past n isolated spheres, only the dominant part at large distances 
(the Stokeslets) being retained. It is of order Ua/p, and in this form is only 
appropriate if alp, < 1 for all p,, the error being O(a/p)s. The third term is of 
order Re, is independent of p,, and is the dominant part of the superposition of 
the first corrections to these Stokes flows due to the non-linear acceleration terms 
Re (u . V) u in the Navier-Stokes equations. 

The use of the Stokes flows round isolated spheres is valid because the inter- 
action velocity field due to the presence of one in the perturbation due to another 
is of order (a/s) (alpj). Furthermore, the motion of the spheres relative to our 
co-ordinate frame is O( Ua/s), so the local rate of change of the fluid velocity u is 
of order U(a/s2)u, whereas the non-linear acceleration terms retained here are 
O( V/s )  u. Thus i t  is justified to regard the flow as instantaneously steady and to 
use known results from the non-linear steady flow past isolated spheres. 

The first inertial correction in the Stokes region round an isolated sphere is 
given by Proudman & Pearson (1957, equation (3.42)); of this only the part of 
order Re (a/p,)O is retained. In  their derivation an arbitrary additive velocity 
field describing the Stokes flow of a uniform stream round the sphere appears in 
this correction. The constant involved was determined by matching to the outer, 
Oseen, region where Repj/a is of order unity or larger. Here the force on the 
sphere is given (expressed as its Stokes terminal velocity U ) ,  rather than the 
velocity relative to the fluid at infinity. Thus the arbitrary constant must be 
chosen so that the additional force of order Re vanishes. This condition is in- 
corporated in equation (1). From the solution in the Oseen region, however, in 
which the flow in the neighbourhood of the whole cluster of spheres appears as 
a uniform stream - Uz and a single Stokeslet point singularity of strength 
proportional to the force on the whole cluster, we see that the fluid in the region 
alpj < 1, Repila < 1 is moving as a whole relative to the fluid at infinity with 
velocity - Qn Re Uz. This means that our co-ordinate frame is falling at a speed 
V (  1 - #n Re) relative to the fluid at infinity, while the centre of mass of the cluster 
is falling at a rate of order Ua/s relative to the co-ordinate frame. For computing 
relative velocities within the cluster, equation (1) is appropriate as it stands. 

The acceleration terms associated with the time dependence of the basic flow 
due to relative motions of the spheres, and with the interaction velocity field 
due to the presence of one in the perturbation due to another, give rise to a 
correction which is smaller by O(a/s). Indeed, the third term of equation (1) 
arises solely from convection of the individual Stokeslet fields by the uniform 
stream. As for given Re and s, P becomes more distant from the cluster, the 
third term of equation (1) becomes comparable with the second and the basis of 
the calculation fails. Instead the full theory of the Oseen region is required. 

If Re < a/s < 1, the departures of the spheres from steady fall may be calcu- 
lated to a first approximation in the manner already indicated by Hocking (1 964). 
Now, however, the second and third terms of equation (1) are used, instead of 
merely the second. If the t e m j  = i in the summation is omitted they give the 
velocity in the neighbourhood of the ith sphere due to the presence of the others, 
and, in the absence of additional restraining forces, or substantial accelerations, 
the ith sphere moves relative to our co-ordinate frame with this velocity. The 
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rate of change of the flow pattern is so small that the inertia of the spheres may 
be neglected, together with the inertia of the fluid within a distance of order a 
from them. With a length scale so, a typical initial distance between spheres, and 
a time scale $si/aU, we have in dimensionless form 

I 1 
z + - (z . rij) rij 

dr, 1 _ -  dt - zi[6 r:j 

Here, as in Hocking’s equation (4), ri is the dimensionless position vector of the 
centre of the ith sphere and rdj = r, - rj. The inclusion of the second, correction, 
term in this equation is only valid if it  is small compared to the first, and only 
sensible if it  is large compared to other terms omitted. This condition may be 
summed up as 

( U / S ) ~  < Re < a/s. 

The Stokeslet velocity field due to a single downward moving sphere is sym- 
metrical about the horizontal plane through the sphere, decreasing with distance 
from it, and everywhere downwards. It is sketched in figure l (a ) .  If a set of 
n spheres lie in a horizontal plane the effect of thej th  sphere will be to give the 
ith one an additional downward velocity. Hence the rate of fall of the whole 
cluster is increased by interactions. If the ith sphere is now displaced slightly 
vertically downwards, its downward velocity is to first order unaffected but it 
tends to move horizontally. After a time this affects the average value of the 
reciprocal of its distance from the others and its vertical velocity changes. 
Whether the net effect is to tend to restore all the particles to the same plane or 
to increase relative vertical displacements has to be found from the detailed 
calculations of Hocking, but because of the symmetrical nature of the Stokeslet 
field vertical displacements are associated directly with horizontal velocities and 
vertical accelerations. The stability calculation thus involves only the square of 
the frequency of an oscillation, and this frequency is either real or pure imaginary. 
The oscillations are thus essentially undamped. 

This situation is an essential consequence only of the symmetry properties of 
the Stokes equations and the assumption of small perturbations about a con- 
figuration which is symmetrical about a horizontal plane. It does not depend on 
the assumption a/s -g 1. The mirror image-time reversal theorem of Bretherton 
(1962) shows that each vertical perturbation velocity d(ri. z)/dt is an even func- 
tion of the set of relative vertical displacements (ri - rj) . z, whereas the horizontal 
velocities are odd functions of this set, for if any configuration is replaced by its 
mirror image in a horizontal plane the vertical velocities are unaltered and the 
horizontal velocities reversed. But, by symmetry, a regular polygon is a possible 
equilibrium configuration in which all relative velocities vanish. For small 
perturbations the relative vertical velocities may be expressed to first order in 
terms of the horizontal displacements only, and the horizontal velocities in 
terms of the vertical displacements even if a/s is of order unity. Thus within the 
context of Stokes equations there is no room for damped oscillations, and to 
explain the observation recourse must be had to inertial effects (conclusion (i)). 
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The inertial correction described by a single term of the second summation in 
equation (1) has a quite different form (figure 1 ( b ) ) .  It is antisymmetric about 
a horizontal plane through the sphere, with outflow in this plane and in flow 
along the vertical axis. A plane regular polygon will thus expand due to this 
term, the relative velocity of each sphere being horizontal, independent of the 
size of the polygon, and equal to &Re U times the vector sum of unit vectors 
directed from all the other spheres. The constant rate of expansion will continue 
until Re s/a is of order unity and equation ( 2 )  becomes invalid. 

FIGURE 1. (a)  Streamlines of perturbation flow due t o  small downward moving sphere at 

The effect of the inertial correction on the small oscillations about a regular 
polygon described by Hocking for Re = 0 requires more detailed analysis. As 
long as Re s / a  is small, the correction is small and equation ( 2 )  may be used, but 
in the later stages of the expansion different considerations apply. The first is 
the more interesting case, and will be dealt with first. Two things may be said 
at once. The frequency of the oscillations is proportional to s-~, which decreases 
as the polygon expands. However, a large number, O(Re s/a)-l, of such oscilla- 
tions occur before the frequency has changed substantially, so conditions may 
be described as ‘slowly varying’. Secondly, the additional term gives rise to 
vertical velocities proportional to small vertical displacements and horizontal 
velocities proportional to horizontal perturbations. This type of term acts as 
a small positive or negative damping, and the amplitude of the oscillations may 
be expected to change slowly with time. The effect over one period is essentially 
small for as long as equation ( 2 )  is valid, but the cumulative change over many 
periods may be large. 

Following Hocking, we consider small perturbations ( z ~ ,  yi, xi) of the ith 
sphere from its mean relative position 

the origin (Stokeslet). ( b )  First inertial correction in-region Res/a < 1. 

- 
ri = c~(st)  {x cos [2n(i/n)] + y sin [2n(i/n)]) (i = 1, . . . , n),  
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where x and y are orthogonal, horizontal unit vectors. a(&) is a measure of the 
dimensionless size of the polygon relative to its initial size so, and is given by 

a @ )  = 1 +$(cot 74212) E t ,  

where, for brevity, we have written E = Re sola. If we denote the n-dimensional 
vectors {xi} ,  (yd}, (zi} (i = 1, . . . , n)  by ?& q, < respectively, we obtain linearized 
equations for the perturbations of the type 

(3) I dg/dt = - c-~B. <- (sic+) (M. 6- N .q), 

dq/dt = - c - ~ C .  <- (./a) (- N . e+ L.q), 
d</dt  = B. 5 + C .q) + (./a) (L + M). <. 

The coefficients B,,, etc., of the n x n matrices B, etc., are given for i + j by 
cr2 - sin {n(i +j ) /n}  B,  = - ( r i i . x )  = - - 

C, = -- ( r  . . .y)  = + 
( F z ’ ~ ) ~  4sin{n(i-j)/n} /sin{n(i-j)/n}/ ’ 

a 2  - COS {m(i +j) /n)  
( F i j I 3  xi 4 sin {n(i +j ) /n}  lsin {n(i - j ) /nq ’ 

a sin2{7r(i +j) /n}  
Lii = - ( F i i .  x)2 = 

Mi, = - ( Fii . y)2 = 

4( Fii)3 

4( Fii )3  

8 Isin {n(i - j ) / n l y  

8 Jsin {n(i -j)/n>I ’ 
a cos2{7r(i + j ) /n }  

P -  - sin {n(i +j ) /n)  cos {n(i +j) /n}  N . .  = -_ ( r  ... x )  (r ...y) = - 
23 4(Fi j )3  23 8 lsin{n(i -j)/n}l Y 

and Bid = - C B {,, Cii = - C Cij, etc. 
i+i i+i 

Hocking found the normal mode solutions of equation (3) for the case E = 0, 
cr = 1, as follows. If <, q, are given by the real parts of 

X, e iht ,  Y, e i h t ,  2, eiprt, 

then pf must be a latent root of the matrix 
-$A = B.B+C.C,  

corresponding to the eigen-vector 2,. Then 

& = - ( I / i ~ , ) B . Z , ,  Y,= -( l / i~ , )C.Z, .  (4) 
Now A is a circulant matrix (i.e. Ai+l,i+l = A,) and is also real and symmetric 
(Aii = +A,). These properties arise from the invariance of the polygon to 
rotation through any multiple of 27r/n and to reflexion in the Ox axis. A great 
simplification in this problem arises because every circulant matrix has the same 
complete set of orthogonal eigen-vectors 

2, = (or, 4 . . ., 4% 
where or is an nth root of unity 

r ( r  = 1, ..., n). = e2nir/n 

Then 
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Hocking showed that if 3 < n < 6, p," is positive for all r ,  except r = 0, for which 
it vanishes, but if 7 < n < 12 at least one negative latent root exists. We shall 
confine our attention to the former case, in which the polygonal configuration 
is stable. 

The coefficients in equation (3) are functions of time, so a straightforward 
normal-mode analysis is not available to us. The method used instead is based 
on standard techniques for the asymptotic solution of equations with almost 
periodic solutions, and is related to  perturbation analysis in quantum theory. 

We look for solutions of the form 

c = [a(et) {z, + Ecr(et) Z: + 0(e2)} exp i p, (r = 1, ..., n- l), ( 5 )  131 
with corresponding expressions for ri; and q. a(et) is a complex amplitude function 
which varies only slightly over the period 2ncr2/pr of an oscillation. The phase of 
the oscillation is given by rt 

rather than by,@ and the direction of is not quite that of Z,, there being a small 
correction scrZ;. Higher-order corrections are of smaller order still for as long 
as ecr < 1. It is only under this condition that equation (3) is valid anyhow, but 
the time involved before it is violated embraces many oscillations and significant 
damping. We now substitute into equation (3) and formally equate to zero 
coefficients of successive powers of 8. 

The zero-order equations reduce at once to the eigen-value problem solved by 
Hocking. The first-order equations are 

i,u,g+B.Zi = -(ci/a)crX,.-(M.&- N.Y,), 

ip,Yi+ C .  2; = - (&/a) cry,- ( - N .X,+ L.Y,), 
ip,Z; - (B. X: + C . Yi) = - @/a) crZ, + (L + M )  . 2,. 

Here u is the derivative of a with respect to its argument (Et). On elimination of 
Xi and Yi between these equations, and using the relations (a), we have 

{B. B + C .  C -p," I}. 2; = - Sip,(da/a) Z,+ ip,{L+ M -,U;~P}. Z,, ( 6 )  

where P is the matrix 

B.M.B+C.L.C-B.N.C-C.N.B. 

Equation (6) determines whether a solution of the assumed form exists. The 
matrix -&A-p,"I 

multiplying 2: is singular, precisely because p: is a latent root of - &A, so there 
is a solution only if the right-hand side is specially chosen. In  this problem this 
condition may be obtained elegantly by noting that by symmetry 

is a circulant matrix, so 
L+M-py2P 

( L + M - pT2 P) . Z, = 2K,& 
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for some latent root 2 ~ , ,  and 

{B.B+C.C-,uFI}.Z,= ( ,u~- ,u~)Zq ( q =  1 ,..., n) .  

Hence if 2: is expanded as a linear combination of the Z,, equation (6) tells us 
that the coefficient of 2, vanishes for all q for which 1.3 =i= ,u: and that a solution 
exists at all if and only if 

Then 2: is any linear combination of the eigenvectors of - &A associated with 
latent roots equal to ,u:. This indeterminacy may be resolved by considering 
terms of O(e2). 

The two modes for which r = n and 1.9 = 0 are respectively associated with 
a uniform downward displacement and a uniform expansion of the polygon as 
a whole. The effect of the inertial correction for these is trivial. For r = 1, . . . , n - 1, 
to each normal mode of the problem with E = 0, there exists a modified solution 
with amplitude which varies slowly with time according to 

2i&{ - @/a) c + K,} = 0. 

This set of modified normal modes is complete, and any initial disturbance 
may be described as a superposition of oscillations, damped or growing according 
to equation (7). Values of 4~, tan (7r/2n) were obtained for n = 3, . . . , 6 ,  using the 

n r 

3 1 
2 

4 1 
2 
3 

5 1 
2 
3 
4 

6 1 
2 
3 
4 
5 

P:: KT 

0.17 -0.11 
0.17 -0.11 

0.35 - 0.12 
0.71 - 0.18 
0-35 - 0.12 

0.40 - 0.15 
1.34 -0.19 
1.34 - 0.19 
0.40 - 0.15 

0.14 -0.17 
1-58 -0.11 
2.89 - 0.25 
1.58 -0.11 
0.14 -0.17 

TABLE 1. 

4 ~ ~ t a n  (77/2n) 

- 0.25 
- 0.25 

- 0.21 
- 0.29 
- 0.21 

- 0.19 
- 0.24 
- 0.24 
- 0.19 

-0.18 
-0.12 
- 0.27 
-0.12 
- 0.18 

~ 

computer EDSAC 2. They are shown in table 1. The unrounded values confirmed 
a computation by hand that for n = 3, = ,ug = Q and K~ = K~ = - 43/16. 
Values of 4 ~ ,  tan (7r/2n) are all negative and substantially smaller than unity, 
indicating weakly damped oscillations. For n = 3 the size of the polygon must 
increase sixteen times for the amplitude of the oscillations to decrease by a 
factor of two. For n = 7, on the other hand, for two modes ,uF is negative and 
perturbations grow exponentially, and for two other modes K, is positive, 
indicating growing vibrations. We thus conclude that a configuration initially 
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not too far removed from a horizontal regular polygon Re s,/a < 1 and 3 < n < 6 
will relax slowly but systematically into that shape as it expands, but if 
7 < n < 12 this will not occur (conclusion (iii)). 

3. The case Re s/a  2 1 
After sufficient time Re s/a becomes comparable with unity and equation (3) 

no longer holds. Some conclusions may be quickly reached from the theory of 
the Oseen flow round an isolated sphere. If Re is small, the condition implies that 
the separation of the spheres is large compared to their radii, and that their 
relative motions are small compared to their speed of fall. A first approximation 
is again that each sphere tends to move relative to the others with a velocity 
equal to the sum of the perturbation velocities induced at that point by the 
steady flow round the other n - 1 isolated spheres. This perturbation velocity is, 
however, no longer given by Stokes flow, but rather by the flow in the Oseen 
region where inertial effects are as important as viscous effects. 

It was seen that for Res/a < 1 ,  the fluid in the neighbourhood of the cluster 
was moving upwards relative to the fluid at infinity with speed $12 Re U.  If 
Resla > 1 each sphere is almost entirely outside the perturbation due to the 
other and each sphere falls faster with speed U(1-gRe).  Por intermediate 
values more complicated formulae for the speed of fall of the centre of mass are 
appropriate which are not of primary interest here. However, we may easily 
compute the rate of expansion of a horizontal plane regular polygon. In  this 
situation the vertical velocities of all the particles are by symmetry the same. 
From Proudman & Pearson (1957, equation (3.39) at p = 0) the relative 
horizontal velocities are given by 

Here rii is again the dimensional position vector of the ith vector relative to the 
jth. As the polygon expands this radial velocity decreases from 

&Re U cot (?r/2n) for Resla < 1 

to vary ultimately as U(Res/a)-2 for Resla $ 1 .  Each individual term in the 
summation gives a positive contribution to the radial velocity. Hence the rate 
of expansion is always positive, but ultimately decreases to zero (conclusion (ii)). 

The stability of the plane configuration for intermediate values of Res/a 
presents a difficult problem, but for large values conclusions may be drawn 
quickly. Each sphere is surrounded at large distances by a perturbation velocity 
field approximately to a narrow wake behind it (along which there is inflow) and 
elsewhere to the approximating irrotational radial flow from a virtual source. 
Provided it does not lie in the wake of any of the others it moves away from them 
withavelocity which is the sum of terms like 

i.e. according to an inverse square law. Thus a plane regular polygon expands and 
it is easily seen that small departures from the plane configuration are amplified. 
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This result holds for any value of Re, provided $/a is sufficiently large (conclusion 
(iv)). The size at which a polygon changes from being stable to unstable cannot 
be definitely established, but in the unstable region the time scale of the changes 
in configuration is certainly very much longer than when the polygon is smaller. 
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